【简介】感谢网友“雕龙文库”参与投稿,这里小编给大家分享一些,方便大家学习。
GRE数学考试对于国内考生来讲并难度不是很大,只要不出现失误的话都可以拿到高分。但是,往往会有考生容易轻敌而不认真备考数学导致失分,造成事后悔恨,因此,我们应该细心耐心地将GRE数学常考知识点进行系统了解,冲击GRE数学满分。
七、离散数学
命题逻辑,图论初步,集合论。
参考书:J. A. Bondy and U.S.R. Murty,Graph theory with applications
说明:逻辑的题目比较简单,也就是命题逻辑的基本运算,最多再加上真值表,随便找一本离散数学的书看看基本概念就行了。集合论的题目也比较简单。不过由于系里面没有开图论的课,所以大家还是好好看书,Bondy这本书看看第一章就行了。
八、数值分析
高斯迭代法,插值法等基本运算法则。
参考书:李庆扬等的《数值计算原理》
说明:内容很少,我考试的时候没见过。
九、实变函数
可数性概念,可测,可积的概念,度量空间,内积等概念。
说明:以Cracking the GRE Math Test相关章节为主。
十、拓扑学
邻域系,可数性公理,紧集的概念,基本拓扑性质。
参考书:J. R. Munkres, Topology
说明:重点,近几年的分量越来越大。以Cracking the GRE Math Test相关章节为主,不过据说考过foundamental group,大家还是好好看看书。
十一、复变函数
基本概念,解析性,柯西积分定理,TaylorLaurent展式,保角变换,留数定理
参考书:方企勤先生的《复变函数教程》,Lars V. Ahlfors的Complex Analysis
说明:学过复变就行了,一定要记住基本公式。
十二、概率论与统计
古典概型,单变量概率分布模型,二项式分布的正态近似
参考书:李贤平的《概率论基础》
说明:以Cracking the GRE Math Test中相关章节为主,一般来说很简单。不过由于2字班没有学过古典概型,所以我还是把李贤平的这本书好好看了看。统计方面不用担心,不会有难题,所以不用专门找书看。
以上是GRE数学考试需要复习的知识点的相关内容,希望考生能把这些基本问题先弄清楚,然后认真地进行复习,不要因为轻敌或者粗心而导致应该拿到的分数未能拿到。
GRE数学考试对于国内考生来讲并难度不是很大,只要不出现失误的话都可以拿到高分。但是,往往会有考生容易轻敌而不认真备考数学导致失分,造成事后悔恨,因此,我们应该细心耐心地将GRE数学常考知识点进行系统了解,冲击GRE数学满分。
七、离散数学
命题逻辑,图论初步,集合论。
参考书:J. A. Bondy and U.S.R. Murty,Graph theory with applications
说明:逻辑的题目比较简单,也就是命题逻辑的基本运算,最多再加上真值表,随便找一本离散数学的书看看基本概念就行了。集合论的题目也比较简单。不过由于系里面没有开图论的课,所以大家还是好好看书,Bondy这本书看看第一章就行了。
八、数值分析
高斯迭代法,插值法等基本运算法则。
参考书:李庆扬等的《数值计算原理》
说明:内容很少,我考试的时候没见过。
九、实变函数
可数性概念,可测,可积的概念,度量空间,内积等概念。
说明:以Cracking the GRE Math Test相关章节为主。
十、拓扑学
邻域系,可数性公理,紧集的概念,基本拓扑性质。
参考书:J. R. Munkres, Topology
说明:重点,近几年的分量越来越大。以Cracking the GRE Math Test相关章节为主,不过据说考过foundamental group,大家还是好好看看书。
十一、复变函数
基本概念,解析性,柯西积分定理,TaylorLaurent展式,保角变换,留数定理
参考书:方企勤先生的《复变函数教程》,Lars V. Ahlfors的Complex Analysis
说明:学过复变就行了,一定要记住基本公式。
十二、概率论与统计
古典概型,单变量概率分布模型,二项式分布的正态近似
参考书:李贤平的《概率论基础》
说明:以Cracking the GRE Math Test中相关章节为主,一般来说很简单。不过由于2字班没有学过古典概型,所以我还是把李贤平的这本书好好看了看。统计方面不用担心,不会有难题,所以不用专门找书看。
以上是GRE数学考试需要复习的知识点的相关内容,希望考生能把这些基本问题先弄清楚,然后认真地进行复习,不要因为轻敌或者粗心而导致应该拿到的分数未能拿到。